Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Bioact Mater ; 38: 276-291, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38745588

RESUMO

Human adenovirus (HAdV) can cause severe respiratory infections in immunocompromised patients, but its clinical treatment is seriously limited by side effects of drugs such as poor efficacy, low bioavailability and severe nephrotoxicity. Trace element selenium (Se) has been found will affect the disease progression of pneumonia, but its antivirus efficacy could be improved by speciation optimization. Therefore, herein we performed anti-HAdV effects of different Se speciation and found that lentinan (LNT)-decorated selenium nanoparticles (SeNPs) exhibited low cytotoxicity and excellent anti-HAdV antiviral activity. Furthermore, SeNPs@LNT reduced the HAdV infection-induced mitochondrial damage and excessive production of reactive oxygen species (ROS). It was also involved in the repair of host cell DNA damage and inhibition of viral DNA replication. SeNPs@LNT inhibited HAdV-induced apoptosis mainly by modulating the p53/Bcl-2 apoptosis signaling pathway. In vivo, SeNPs@LNT replenished Se by targeting the infected site through the circulatory system and was involved in the synthesis of Glutathione peroxidase 1 (GPx1). More importantly, GPx1 played an antioxidant and immunomodulatory role in alleviating HAdV-induced inflammatory cytokine storm and alleviating adenovirus pneumonia in Se-deficient mice. Collectively, this study provides a Se speciation of SeNPs@LNT with anti-HAdV activity, and demonstrate that SeNPs@LNT is a promising pharmaceutical candidate for the treatment of HAdV.

2.
Bioact Mater ; 37: 393-406, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38689659

RESUMO

Radiation-induced heart disease (RIHD), characterized by severe oxidative stress and immune dysregulation, is a serious condition affecting cancer patients undergoing thoracic radiation. Unfortunately, clinical interventions for RIHD are lacking. Selenium (Se) is a trace element with excellent antioxidant and immune-modulatory properties. However, its application in heart radioprotection remains challenging. Herein, we developed a novel bioactive Cordyceps militaris-based Se oral delivery system (Se@CM), which demonstrated superior radioprotection effects in vitro against X-ray-induced damage in H9C2 cells through suppressing excessive ROS generation, compared to the radioprotectant Amifostine. Moreover, Se@CM exhibited exceptional cardioprotective effects in vivo against X-ray irradiation, reducing cardiac dysfunction and myocardial fibrosis by balancing the redox equilibrium and modulating the expression of Mn-SOD and MDA. Additionally, Se@CM maintained immuno-homeostasis, as evidenced by the upregulated population of T cells and M2 macrophages through modulation of selenoprotein expression after irradiation. Together, these results highlight the remarkable antioxidant and immunity modulation properties of Se@CM and shed light on its promising application for cardiac protection against IR-induced disease. This research provides valuable insights into developing effective strategies for preventing and managing RIHD.

3.
Angew Chem Int Ed Engl ; : e202404822, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687056

RESUMO

Autophagy could play suppressing role in cancer therapy by facilitating release of tumor antigens from dying cells and inducing immunogenic cell death (ICD). Therefore, discovery and rational design of more effective inducers of cytotoxic autophagy is expected to develop new strategies for finding innovative drugs for precise and successful cancer treatment. Herein, we develop MoO3-x nanowires (MoO3-x NWs) with high oxygen vacancy and strong photothermal responsivity to ablate tumors through hyperthermia, thus promote the induction of cytotoxic autophagy and severe ICD. As expected, the combination of MoO3-x NWs and photothermal therapy (PTT) effectively induces autophagy to promote the release of tumor antigens from the ablated cells, and induces the maturation and antigen presentation of dendritic cells (DCs), subsequently activates cytotoxic T lymphocytes (CTLs)-mediated adaptive immunity. Furthermore, the combination treatment of MoO3-x NWs with immune checkpoint blockade of PD-1 could promote the tumor-associated macrophages (TAMs) polarization into tumor-killing M1 macrophages, inhibit infiltration of Treg cells at tumor sites, and alleviate immunosuppression in the tumor microenvironment, finally intensify the anti-tumor activity in vivo. This study provides a strategy and preliminary elucidation of the mechanism of using MoO3-x nanowires with high oxygen vacancy to induce autophagy and thus enhance photothermal immunotherapy.

4.
Chembiochem ; : e202400105, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639074

RESUMO

Cell senescence is defined as irreversible cell cycle arrest, which can be triggered by telomere shortening or by various types of genotoxic stress. Induction of senescence is emerging as a new strategy for the treatment of cancer, especially when sequentially combined with a second senolytic drug capable of killing the resulting senescent cells, however severely suffering from the undesired off-target side effects from the senolytic drugs. Here, we prepare a bimetalic platinum-aluminum salen complex (Alumiplatin) for cancer therapy-a combination of pro-senesence chemotherapy with in situ senotherapy to avoid the side effects. The aluminum salen moiety, as a G-quadruplex stabilizer, enhances the salen's ability to induce cancer cell senescence and this phenotype is in turn sensitive to the cytotoxic activity of the monofunctional platinum moiety. It exhibits an excellent capability for inducing senescence, a potent cytotoxic activity against cancer cells both in vitro and in vivo, and an improved safety profile compared to cisplatin. Therefore, Alumiplatin may be a good candidate to be further developed into safe and effective anticancer agents. This novel combination of cell senescence inducers with genotoxic drugs revolutionizes the therapy options of designing multi-targeting anticancer agents to improve the efficacy of anticancer therapies.

5.
Small ; : e2310118, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506599

RESUMO

The combination of ferroptosis and innovative tumor therapy methods offers another promising answer to the problem of tumors. In order to generate effective ferroptosis in tumor cells, iron-based nanomaterials are commonly utilized to introduce foreign iron as a trigger for ferroptosis. However, this usually necessitates the injection of larger doses of iron into the body. These exogenous iron increases are likely to create concealed concerns for symptoms such as liver damage and allergy. Herein, an iron-free radiosensitizer is introduced, oxygen-vacancy-rich MnO2 nanoflowers (ovs-MnO2 ), that promotes ferroptosis and modifies the tumor microenvironment to assist radiotherapy. ovs-MnO2 with enriched oxygen vacancies on the surface induces the release of intracellular free iron (Fe2+ ), which functions as an activator of Fenton reaction and enhances the accumulation of intracellular reactive oxygen species. On the other hand, Fe2+ also triggers the ferroptosis and promotes the accumulation of lipid peroxides. Subsequently, the depletion of glutathione and accumulation of lipid peroxidation in tumor cells leads to the inactivation of glutathione peroxidase 4 (GPX4) and ferroptosis, thereby enhancing the therapeutic efficacy of radiotherapy. The nanoplatform provides a novel strategy for generating novel nanomedicines for ferroptosis-assisted radiotherapy.

6.
Drug Resist Updat ; 72: 101033, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157648

RESUMO

Recently, radioresistance has become a major obstacle in the radiotherapy of cervical cancer. To demonstrate enhanced radiosensitization against radioresistant cervical cancer, radioresistant cervical cancer cell line was developed and the mechanism of radioresistance was explored. Due to the overexpression of (death receptor 5, DR5) in cervical cancer, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-overexpressed cervical cancer cell membrane-camouflaged Cu2-xSe nanomedicine (CCMT) was designed. Since the CCMT was encapsulated with TRAIL-modified cell membrane, it represented high target to cervical cancer cell and immune evasion. Furthermore, Cu2-xSe had the ability to scavenge glutathione (GSH) and produce ·OH with excess H2O2 in the tumor microenvironment. The presence of CCMT combined with radiation therapy could effectively increase the 1O2 produced by X-rays. In vitro and in vivo studies elaborated that CCMT exhibited excellent radiosensitization properties to reverse radiotolerance by scavenging GSH and promoting DNA damage, apoptosis, mitochondrial membrane potential damage and metabolic disruption. Collectively, this study suggested that the development of TRAIL-overexpressed cell membrane-camouflaged Cu2-xSe nanomedicine could advance future cervical cancer treatment and minimize the disadvantages associated with radiation treatment.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Peróxido de Hidrogênio , Ligantes , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Biomaterials ; 305: 122452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154440

RESUMO

Radiotherapy is still the recommended treatment for cervical cancer. However, radioresistance and radiation-induced side effects remain one of the biggest clinical problems. Selenium (Se) has been confirmed to exhibit radiation-enhancing effects for cancer treatment. However, Se species dominate the biological activities and which form of Se possesses better radiosensitizing properties and radiation safety remains elusive. Here, different Se species (the valence state of Se ranged from - 2, 0, +4 to + 6) synergy screen was carried out to identify the potential radiosensitizing effects and radiation safety of Se against cervical cancer. We found that the therapeutic effects varied with the changes in the Se valence state. Sodium selenite (+4) displayed strong cancer-killing effects but also possessed severe cytotoxicity. Sodium selenate (+6) neither enhanced the killing effects of X-ray nor possessed anticancer activity by its alone treatment. Although nano-selenium (0), especially Let-SeNPs, has better radiosensitizing activity, the - 2 organic Se, such as selenadiazole derivative SeD (-2) exhibited more potent anticancer effects and possessed a higher safe index. Overall, the selected Se drugs were able to synergize with X-ray to inhibit cell growth, clone formation, and cell migration by triggering G2/M phase arrest and apoptosis, and SeD (-2) was found to exhibit more potent enhancing capacity. Further mechanism studies showed that SeD mediated p53 pathway activation by inducing DNA damage through promoting ROS production. Additionally, SeD combined with X-ray therapy can induce an anti-tumor immune response in vivo. More importantly, SeD combined with X-ray significantly inhibited the liver metastasis of tumor cells and alleviated the side effects caused by radiation therapy in tumor-bearing mice. Taken together, this study demonstrates the radiosensitization and radiation safety effects of different Se species, which may shed light on the application of such Se-containing drugs serving as side effects-reducing agents for cervical cancer radiation treatment.


Assuntos
Neoplasias Hepáticas , Radiossensibilizantes , Selênio , Neoplasias do Colo do Útero , Humanos , Feminino , Camundongos , Animais , Selênio/farmacologia , Selênio/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/radioterapia , Proteína Supressora de Tumor p53 , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico
8.
Biomaterials ; 302: 122321, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37722183

RESUMO

Radiotherapy is an important therapeutic modality in the treatment of cancers. Nevertheless, the characteristics of the tumor microenvironment (TME), such as hypoxia and high glutathione (GSH), limit the efficacy of radiotherapy. Manganese-based (Mn-based) nanomaterials offer a promising prospect for sensitizing radiotherapy due to their good responsiveness to the TME. In this review, we focus on the mechanisms of radiosensitization of Mn-based nanosystems, including alleviating tumor hypoxia, increasing reactive oxygen species production, increasing GSH conversion, and promoting antitumor immunity. We further illustrate the applications of these mechanisms in cancer radiotherapy, including the development and delivery of radiosensitizers, as well as their combination with other therapeutic modalities. Finally, we summarize the application of Mn-based nanosystems as contrast agents in realizing precision therapy. Hopefully, the present review will provide new insights into the biological mechanisms of Mn-based nanosystems, as well as their applications in radiotherapy, in order to address the difficulties and challenges that remain in their clinical application in the future.


Assuntos
Nanoestruturas , Neoplasias , Radiossensibilizantes , Humanos , Manganês/uso terapêutico , Radiossensibilizantes/uso terapêutico , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
9.
ACS Nano ; 17(16): 15590-15604, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37530430

RESUMO

Because of the distinguished properties between nanovaccine and traditional vaccine, the precise guidelines for nanovaccines with an optimal vaccination strategy to induce ideal immunities are greatly desired for combating major diseases, including cancer and infections. Herein, we designed and synthesized a self-navigating nanoadjuvant composed of Fe-doped manganese carbonate and its nanovaccine via a facile method. First, the degradation of the nanoadjuvant under acidic milieu of immune cells in lymph nodes would generate T1 and T2 MR imaging (MRI) signals to reflect the transformation dynamics of the nanovaccine and inform us when the next vaccination needed. Under this guideline, nanovaccines with a precise vaccination strategy triggered robust antigen-specific immune responses and immunological memory to effectively prevent ovalbumin (OVA)-expressing melanoma relapse by activating dendritic cells via a stimulator of interferon genes (STING) signaling pathway and inducing antigen cross-presentation by shaping lysosome integrity with CO2 generation and upregulating transporter associated antigen processing 1 (TAP-1) transporter. This study provides a universal nanoadjuvant with imaging self-guidance, immunopotentiating, and cross-priming activities for developing precise vaccines with an optimal immunization strategy to combat major diseases.


Assuntos
Vacinas Anticâncer , Melanoma , Nanopartículas , Neoplasias , Vacinas , Humanos , Animais , Camundongos , Apresentação de Antígeno , Melanoma/patologia , Neoplasias/metabolismo , Vacinação , Imageamento por Ressonância Magnética , Células Dendríticas , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Nanopartículas/química
10.
J Mater Chem B ; 11(24): 5607-5618, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37170629

RESUMO

Radiotherapy has been extensively applied to cancer therapy in clinical trials. However, radiation resistance and dose limitation generally hamper the efficacy of radiotherapy. There is an urgent need for radiosensitizers with high efficiency and safety to enhance the anti-tumor effect of radiotherapy. In this paper, a selenium-containing (Se) ruthenium (Ru) complex (RuSe) was designed as a radiosensitizer to synergistically augment the killing effect of radiotherapy on nasopharyngeal carcinoma cells. In this system, the heavy atomic effect of Ru enhances the photoelectron production triggered by X-rays, thus inducing a burst of reactive oxygen species (ROS). In addition, Se atoms with a strong polarization property were introduced into the ligand of the metal complex to enhance the tumor chemo/radiotherapy effect. Consequently, RuC with a weak atomic polarization effect, as a comparison for RuSe, was also rationally explored to elucidate the role of Se atoms on chemo/radiotherapy sensitization. Indeed, compared with RuC, RuSe at a sub-toxic dose was able to potentiate the lethality of radiotherapy after preconditioning with cancer cells, by inducing ROS over-production, decreasing the mitochondrial membrane potential, and arresting the cell cycle at the sub-G1 phase. Furthermore, upon radiation, RuSe was superior to RuC, by inducing apoptotic cell death by activating caspase-3, -8, and -9. In summary, this study not only demonstrates an effective and safe strategy for the application of RuSe complexes to the cancer-targeted chemo/radiotherapy of human cancers, but also sheds light on the potential mechanisms of such Se-containing drugs as efficient radiotherapy sensitizers.


Assuntos
Neoplasias Nasofaríngeas , Radiossensibilizantes , Rutênio , Selênio , Humanos , Selênio/farmacologia , Raios X , Rutênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Carcinoma Nasofaríngeo/tratamento farmacológico , Radiossensibilizantes/farmacologia , Neoplasias Nasofaríngeas/tratamento farmacológico
11.
Adv Mater ; 35(36): e2212178, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37204161

RESUMO

Facilely synthesized nanoradiosensitizers with well-controlled structure and multifunctionality are greatly desired to address the challenges of cancer radiotherapy. In this work, a universal method is developed for synthesizing chalcogen-based TeSe nano-heterojunctions (NHJs) with rod-, spindle-, or dumbbell-like morphologies by engineering the surfactant and added selenite. Interestingly, dumbbell-shaped TeSe NHJs (TeSe NDs) as chaperone exhibit better radio-sensitizing activities than the other two nanostructural shapes. Meanwhile, TeSe NDs can serve as cytotoxic chemodrugs that degrade to highly toxic metabolites in acidic environment and deplete GSH within tumor to facilitate radiotherapy. More importantly, the combination of TeSe NDs with radiotherapy significantly decreases regulatory T cells and M2-phenotype tumor-associated macrophage infiltrations within tumors to reshape the immunosuppressive microenvironment and induce robust T lymphocytes-mediated antitumor immunity, resulting in great abscopal effects on combating distant tumor progression. This study provides a universal method for preparing NHJ with well-controlled structure and developing nanoradiosensitizers to overcome the clinical challenges of cancer radiotherapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Imunoterapia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Linfócitos T Reguladores , Microambiente Tumoral
12.
Bioact Mater ; 27: 560-573, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37223423

RESUMO

The therapeutic efficacy of radioimmunotherapy against triple negative breast cancer (TNBC) is largely limited by the complicated tumor microenvironment (TME) and its immunosuppressive state. Thus developing a strategy to reshape TME is expected to achieve highly efficient radioimmunotherapy. Therefore, we designed and synthesized a tellurium (Te)-driven maple leaf manganese carbonate nanotherapeutics (MnCO3@Te) by gas diffusion method, but also provided a chemical catalytic strategy in situ to augment ROS level and activate immune cells for improving cancer radioimmunotherapy. As expected, with the help of H2O2 in TEM, MnCO3@Te heterostructure with reversible Mn3+/Mn2+ transition could catalyze the intracellular ROS overproduction to amplify radiotherapy. In addition, by virtue of the ability to scavenge H+ in TME by carbonate group, MnCO3@Te directly promote the maturation of dendritic cells and macrophage M1 repolarization by stimulator of interferon genes (STING) pathway activation, resulting in remodeling immuno-microenvironment. As a result, MnCO3@Te synergized with radiotherapy and immune checkpoint blockade therapy effectively inhibited the breast cancer growth and lung metastasis in vivo. Collectively, these findings indicate that MnCO3@Te as an agonist, successfully overcome radioresistance and awaken immune systems, showing promising potential for solid tumor radioimmunotherapy.

13.
J Am Chem Soc ; 145(22): 12193-12205, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37208802

RESUMO

Selenoprotein plays a crucial role in immune cells and inflammatory regulation. However, as a protein drug that is easily denatured or degraded in the acidic environment of the stomach, efficient oral delivery of selenoprotein is a great challenge. Herein, we innovated an oral hydrogel microbeads-based biochemical strategy that can in situ synthesize selenoproteins, therefore bypassing the necessity and harsh conditions for oral protein delivery while effectively generating selenoproteins for therapeutic applications. The hydrogel microbeads were synthesized by coating hyaluronic acid-modified selenium nanoparticles with a protective shell of calcium alginate (SA) hydrogel. We tested this strategy in mice with inflammatory bowel disease (IBD), one of the most representative diseases related to intestinal immunity and microbiota. Our results revealed that hydrogel microbeads-mediated in situ synthesis of selenoproteins could prominently reduce proinflammatory cytokines secretion and mediate immune cells (e.g., reduce neutrophils and monocytes and increase immune regulatory T cells) to effectively relieve colitis-associated symptoms. This strategy was also able to regulate gut microbiota composition (increase probiotics abundance and suppress detrimental communities) to maintain intestinal homeostasis. Considering intestinal immunity and microbiota widely associated with cancers, infections, inflammations, etc., this in situ selenoprotein synthesis strategy might also be possibly applied to broadly tackle various diseases.


Assuntos
Hidrogéis , Microbiota , Animais , Camundongos , Microesferas , Selenoproteínas/metabolismo , Inflamação
14.
Front Bioeng Biotechnol ; 11: 1168827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034255

RESUMO

Introduction: Radiation therapy has Q6long been a routine and effective treatment for non-small cell lung cancer (NSCLC), but the radioresistance and side effects have limited its application. In recent years, the superiority showed by trace element selenium in tumor radiotherapy sensitization has received wide attention. However, different forms of selenium compounds exhibit different chemical properties and their mechanisms of action on tumors may be different. Methods: Human non-small cell lung cancer SPC-A1 cells were studied. Drug toxicity was detected by MTT assay. The selenium content absorbed in vitro at different time points was detected by ICP-MS. Colony formation were conducted to observe the radiosensitization effect of different selenium compounds on SPC-A1 cells, and to compare the proliferation ability of SPC-A1 cells treated by radiation alone and radiation combined with different selenium compounds. Cell migration was detected by cell scratch assay. The changes of cell cycle and apoptosis were detected by flow cytometry. DCFH-DA fluorescent probe was used to detect the effects of different selenium compounds combined with X-ray on ROS production. Results: In this study, these four representative selenium compounds all have a certain ability to enhance the ability of radiotherapy to inhibit tumor cell proliferation and migration, and the mechanism may be related to blocking cell cycle in G2/M phase, activating the caspase cascade and reducing intracellular ROS levels to induce tumor cell apoptosis. Among them, -2-valent organic selenium has the most obvious effect, mainly inhibits cell migration, and induces early apoptosis by activating a large number of caspase-3, and arrest the cell cycle in S phase and G2/M phase. 0-valent selenium nanoparticles mainly arrest the cell cycle in G2/M phase. +4-valent inorganic selenium exerts its antitumor effects primarily by inhibiting tumor cell migration and inducing early apoptosis of tumor cells. Discussion: In this paper, the antitumor effects of four different forms of selenium compounds combined with X-rays on SPC-A1 cells were investigated, and their inhibitory effects on the proliferation and migration of cancer cells and their mechanisms were examined. We found that the radiosensitizing effect of selenium on NSCLC was closely related to its selenium form through the study of the sensitizing effect of different kinds of selenium compounds on radiotherapy.

15.
J Nanobiotechnology ; 21(1): 96, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36935493

RESUMO

The incidence and mortality rates of lung cancer are among the highest in the world. Traditional treatment methods include surgery, chemotherapy, and radiotherapy. Although rapid progress has been achieved in the past decade, treatment limitations remain. It is therefore imperative to identify safer and more effective therapeutic methods, and research is currently being conducted to identify more efficient and less harmful drugs. In recent years, the discovery of antitumor drugs based on the essential trace element selenium (Se) has provided good prospects for lung cancer treatments. In particular, compared to inorganic Se (Inorg-Se) and organic Se (Org-Se), Se nanomedicine (Se nanoparticles; SeNPs) shows much higher bioavailability and antioxidant activity and lower toxicity. SeNPs can also be used as a drug delivery carrier to better regulate protein and DNA biosynthesis and protein kinase C activity, thus playing a role in inhibiting cancer cell proliferation. SeNPs can also effectively activate antigen-presenting cells to stimulate cell immunity, exert regulatory effects on innate and regulatory immunity, and enhance lung cancer immunotherapy. This review summarizes the application of Se-based species and materials in lung cancer diagnosis, including fluorescence, MR, CT, photoacoustic imaging and other diagnostic methods, as well as treatments, including direct killing, radiosensitization, chemotherapeutic sensitization, photothermodynamics, and enhanced immunotherapy. In addition, the application prospects and challenges of Se-based drugs in lung cancer are examined, as well as their forecasted future clinical applications and sustainable development.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Selênio , Humanos , Selênio/uso terapêutico , Selênio/metabolismo , Medicina de Precisão , Nanomedicina , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Antioxidantes/metabolismo , Nanopartículas/uso terapêutico , Portadores de Fármacos
16.
J Nanobiotechnology ; 21(1): 90, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922836

RESUMO

BACKGROUND: Radiotherapy is a commonly used tool in clinical practice to treat solid tumors. However, due to the unique microenvironment inside the tumor, such as high levels of GSH, overexpressed H2O2 and hypoxia, these factors can seriously affect the effectiveness of radiotherapy. RESULTS: Therefore, to further improve the efficiency of radiotherapy, a core-shell nanocomposite CeO2-MnO2 is designed as a novel radiosensitizer that can modulate the tumor microenvironment (TME) and thus improve the efficacy of radiation therapy. CeO2-MnO2 can act as a radiosensitizer to enhance X-ray absorption at the tumor site while triggering the response behavior associated with the tumor microenvironment. According to in vivo and in vitro experiments, the nanoparticles aggravate the killing effect on tumor cells by generating large amounts of ROS and disrupting the redox balance. In this process, the outer layer of MnO2 reacts with GSH and H2O2 in the tumor microenvironment to generate ROS and release oxygen, thus alleviating the hypoxic condition in the tumor area. Meanwhile, the manganese ions produced by degradation can enhance T1-weighted magnetic resonance imaging (MRI). In addition, CeO2-MnO2, due to its high atomic number oxide CeO2, releases a large number of electrons under the effect of radiotherapy, which further reacts with intracellular molecules to produce reactive oxygen species and enhances the killing effect on tumor cells, thus having the effect of radiotherapy sensitization. In conclusion, the nanomaterial CeO2-MnO2, as a novel radiosensitizer, greatly improves the efficiency of cancer radiation therapy by improving the lack of oxygen in tumor and responding to the tumor microenvironment, providing an effective strategy for the construction of nanosystem with radiosensitizing function. CONCLUSION: In conclusion, the nanomaterial CeO2-MnO2, as a novel radiosensitizer, greatly improves the efficiency of cancer radiation therapy by improving the lack of oxygen in tumor and responding to the tumor microenvironment, providing an effective strategy for the construction of nanosystems with radiosensitizing function.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Radiossensibilizantes , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Microambiente Tumoral , Compostos de Manganês , Óxidos/uso terapêutico , Hipóxia/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Oxigênio , Nanopartículas/uso terapêutico , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Imageamento por Ressonância Magnética , Linhagem Celular Tumoral , Fotoquimioterapia/métodos
17.
Biomater Sci ; 11(4): 1517-1529, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36606484

RESUMO

The low sensitivity of tumor cells and immunosuppressive microenvironments lead to unsatisfactory efficacy of natural killer (NK) cell immunotherapy. In this work, we developed a safe and effective combination treatment strategy by integrating a selenadiazole derivative (PSeD)-loaded metal azolate framework (PSeD@MAF-4(R)) with NK cells derived from cancer patients against a xenograft human breast tumor model. Intriguingly, it was found that only PSeD@MAF-4(R) pretreatment on tumor cells exhibited synergistic effects with NK cells in inhibiting tumor cell growth by up-regulating NKG2D and its ligands to maximize the interactions between NK and MCF-7 cells. Moreover, PSeD@MAF-4(R) pretreatment could significantly enhance the degranulation of NK cells and regulate their secretions of pro- or anti-inflammatory cytokines (e.g. IL-6, IL-10, and TGF-ß). Furthermore, PSeD@MAF-4(R) could significantly enhance the penetration capability of NK cells into tumor spheroids. The combination treatment mainly induced G1 phase arrest and activated multiple caspase-mediated apoptosis of tumor cells. In vivo evidence showed that PSeD@MAF-4(R) combined with NK cells could highly efficiently combat breast tumor progression via inducing and activating innate immune cell (DC and NK cell) infiltrations within tumor tissues while shaping the suppressive tumor microenvironment by down-regulating the expression of TGF-ß. This developed strategy may provide important information for developing NK cell-based combination cancer immunotherapy with high efficacy and good safety profiles.


Assuntos
Neoplasias da Mama , Células Matadoras Naturais , Animais , Humanos , Feminino , Linhagem Celular Tumoral , Imunoterapia , Fator de Crescimento Transformador beta/metabolismo , Modelos Animais de Doenças , Neoplasias da Mama/terapia , Neoplasias da Mama/metabolismo , Microambiente Tumoral
18.
Adv Sci (Weinh) ; 10(8): e2202519, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36683155

RESUMO

Low persistence, metabolic dysfunction in microenvironment, and tumor-derived immunosuppression of Natural killer (NK) cells in patients are greatly limited the successful clinical application of NK cell-based cancer immunotherapy. Interestingly, herein that human serum albumin-encapsulated black phosphorus quantum dots (BPQDs@HSA) can effectively augment antitumor efficacy of clinical patients-derived NK cell immunotherapy is found. As the donor of phosphate group, BPQDs@HSA binds with the protein of phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1A) and activates the downstream PI3K-Akt and mTOR signaling pathways to reprogram cell metabolism of glycolysis and further promote the oxidative phosphorylation, sequentially maintains the cell viability and immunity of NK cells. And multiomics analysis is therefore conducted to reveal the underlying immunoregulation mechanisms, and that BPQDs@HSA can interact with the Toll-like receptor (TLR) on the NK cell surface and increase the expression level of mTOR, and thus activate downstream NF-κB signalling pathways to regulate cytokine secretion and enhance immune tumoricidal is found. BPQDs@HSA can also enhance immune surveillance, relieve immune suppression, and inhibit tumor immune escape. Collectively, this study not only demonstrates a successful strategy for nanomedicine-potentiated immune-cancer therapy, but also sheds light on the understanding of interface between nanomedicine and immune cells activation.


Assuntos
Neoplasias , Pontos Quânticos , Humanos , Fósforo , Fosfatidilinositol 3-Quinases , Células Matadoras Naturais , Imunoterapia , Neoplasias/patologia , Serina-Treonina Quinases TOR , Microambiente Tumoral
19.
Small Methods ; 7(2): e2201313, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599700

RESUMO

Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.


Assuntos
Nanoestruturas , Neoplasias da Bexiga Urinária , Humanos , Qualidade de Vida , Nanotecnologia/métodos , Medicina de Precisão , Portadores de Fármacos
20.
J Am Chem Soc ; 144(45): 20825-20833, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318653

RESUMO

Thioredoxin reductase (TrxR) is highly overexpressed in cancer cells to promote malignant tumor survival. Designing drugs that inhibit TrxR activity is a promising approach to achieve highly effective cancer chemotherapy. However, the selectivity of TrxR inhibitors continue to be a challenge for scientists. In this work, we demonstrate a new strategy to selectively inhibit TrxR through constructing electrophilic center -N-Se(δ+)-N- by using the polarization effect of the selenium atom. The constructed electrophilic center interacts noncovalently with the active motif of TrxR to avoid the interference of other residues in human tissues, thereby selectively inhibiting intracellular TrxR activity. Computational and experimental analysis confirms that the formed electrophilic selenium center preferred to attack the SeC residues in the redox active center of TrxR at the 498 site through strong noncovalent interactions. Both in vitro and in vivo experimental results confirmed that this strategy can significantly improve the anticancer effect. This study may provide a novel route to design highly effective and selective chemotherapeutic drugs.


Assuntos
Neoplasias , Selênio , Humanos , Tiorredoxina Dissulfeto Redutase , Selênio/farmacologia , Neoplasias/tratamento farmacológico , Oxirredução , Antioxidantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA